Non-linear one-step methods for initial value problems
نویسندگان
چکیده
منابع مشابه
One-Step Piecewise Polynomial Galerkin Methods for Initial Value Problems*
A new approach to the numerical solution of systems of first-order ordinary differential equations is given by finding local Galerkin approximations on each subinterval of a given mesh of size h. One step at a time, a piecewise polynomial, of degree n and class C°, is constructed, which yields an approximation of order 0(A*") at the mesh points and 0(A"+1) between mesh points. In addition, the ...
متن کاملImplicit One-step L-stable Generalized Hybrid Methods for the Numerical Solution of First Order Initial Value problems
In this paper, we introduce the new class of implicit L-stable generalized hybrid methods for the numerical solution of first order initial value problems. We generalize the hybrid methods with utilize ynv directly in the right hand side of classical hybrid methods. The numerical experimentation showed that our method is considerably more efficient compared to well known methods used for the n...
متن کاملMODIFIED K-STEP METHOD FOR SOLVING FUZZY INITIAL VALUE PROBLEMS
We are concerned with the development of a K−step method for the numerical solution of fuzzy initial value problems. Convergence and stability of the method are also proved in detail. Moreover, a specific method of order 4 is found. The numerical results show that the proposed fourth order method is efficient for solving fuzzy differential equations.
متن کاملTrigonometrically fitted two-step obrechkoff methods for the numerical solution of periodic initial value problems
In this paper, we present a new two-step trigonometrically fitted symmetric Obrechkoff method. The method is based on the symmetric two-step Obrechkoff method, with eighth algebraic order, high phase-lag order and is constructed to solve IVPs with periodic solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. The numeri...
متن کاملOptimal order and minimal complexity of one-step methods for initial value problems
We consider the task of numerically approximating the solution of an ordinary differential equation initial value problem. A methodology is given for determining the computational complexity of finding an approximate solution with error not exceeding t . In addition, we determine the method of optimal order within a given class of methods, and show that under reasonable hypotheses, the optimal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1987
ISSN: 0898-1221
DOI: 10.1016/0898-1221(87)90004-6